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Data Pre-processing

Exploratory Data Analysis

High Dimensional Regression
© Linear Regression
@ Ridge Regression
© Lasso Regression
Neural Network
@ Deep Feed-Forward Neural Network
@ 1D Convolution Neural Network
© LSTM
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Exploratory Data Analysis

Company Number by time

@ We plot the number of companies bar chart by time
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Exploratory Data Analysis

Auto Correlation Factor

o Lag-lI Sample Auto Correlation of r; is defined as:

5, — Z;r:z-u (re—F)(re—e—F)

pe S ()2
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Exploratory Data Analysis

Testing Individual ACF

@ Ho:pr=0vs. Hy:pe#0
@ We use t-ratio defined as below to test each feature's p-value:

2

Va2 62T

t-ratio =
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Exploratory Data Analysis

Auto Correlation Factor

@ We plot the boxplot of ACF by each company's 102 features (lag=1)
and ACF’s p-value of each feature(blue dots).

@ There are around 84 percent of features's ACF p-value < 0.05.

Auto Correlation & p-value for each feature (lag=1)

ACF & pvalue
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Exploratory Data Analysis

Auto Correlation Factor (lag=2)

e We plot the boxplot of ACF by each company's 102 features (lag=2)
and ACF’s p-value of each feature(blue dots).

@ There are around 80 percent of features's ACF p-value < 0.05.

Auto Correlation & p-value for each feature (lag=2)

ACF & pvalue
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Exploratory Data Analysis

Auto Correlation Factor (lag=3)

e We plot the boxplot of ACF by each company's 102 features (lag=3)
and ACF's p-value of each feature(blue dots).

@ There are around 76 percent of features's ACF p-value < 0.05.

Auto Correlation & p-value for each feature (lag=2)

ACF & pvalue
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High Dimensional Regression

Linear Regression

@ Linear Regression: m/Bin S0 v — (X)) B)?

o Linear Regression’s estimate: 3 = (x7x) 1xTy
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High Dimensional Regression

Linear Regression
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High Dimensional Regression

Linear Regression

o Validation MSE = 0.0357
o Validation R2,s = -0.0836
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High Dimensional Regression

Linear Regression

o Test MSE = 0.0274
o Test Ry, = -0.1728

Test_LR_model
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High Dimensional Regression

Ridge Regression

e Ridge Regression: mﬁin Sl = (X)TB)? + AE 87

@ Here A > 0 is the tuning parameter
© When A = 0: we get the linear regression
@ When A\ = co: we get Bb;dge =0
© For X\ in between, we are balancing the two ideas: fitting a linear model
of y on x, and shrinking the coefficients.

Huei-Wen Teng, Ming-Hsiu Hu (NCTU) Empirical Asset Pricing via Machine Learning June 2020 13 /40



High Dimensional Regression

Ridge Regression

@ We use GridSearchCV for hyperparameter tuning.

e Choose A = 50 out of [0.0001, 0.001, 0.01, 0.1, 1, 5, 10, 20, 25, 30,
35, 40, 45, 50]
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High Dimensional Regression

Ridge Regression

o Validation MSE = 0.0342
o Validation R2,s = -0.0856
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High Dimensional Regression

Ridge Regression

o Test MSE = 0.0253
o Test R ,g = -0.0404
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High Dimensional Regression

Lasso Regression

@ Lasso Regression: m/Bin S (i —(X)TB) + )\Zj'-’zl | 5 |

@ Replace the 2-norm in Ridge Regression with 1-norm

@ Main differences between Ridge Regression and Lasso Regression:
Lasso Regression is able to perform variable selection in linear model.
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High Dimensional Regression

Ridge Regression

@ We use GridSearchCV for hyperparameter tuning.
@ Choose A = 0.001 out of [0.00001, 0.0001, 0.001, 0.01, 0.1, 1]
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High Dimensional Regression

Lasso Regression

o Validation MSE = 0.0329
o Validation R2,s = -0.0013
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High Dimensional Regression

Lasso Regression

o Test MSE = 0.0232
o Test R3,s = 0.0044
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High Dimensional Regression

Regression Long Portfolio Comparison

@ Compare Linear Regression / Ridge Regression / Lasso Regression
with Long Top-decile portfolio
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High Dimensional Regression

Regression Long Portfolio Comparison

@ The results align with Gu's paper

@ Vast predictor sets are viable for linear prediction when either
penalization or dimension reduction is used.

@ Allowing for nonlinearities substantially improves predictions
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Neural Network

1D-CNN

@ Below is the shape of a single data (company) for 1D-CNN input

@ X, : means the value of p factor for a single company at time t

o
X1,1 X211ttt Xpd
X12 X2 cc Xp2
Xp, 7 =
X1,T X2,T **° XpT
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Neural Network

1D-CNN

@ Here we illustrate 1D-CNN architecture using one single data
(company X).

1D - Convolution Max Pooling (size = 2) Flattening FCN ( ReLU as activation function )
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Figure: 1D-CNN Architecture for a single training sample ( a single company X )
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Dense = 50

Company X

Figure: 1D-CNN Architecture for a single training sample
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Neural Network

1D-CNN

@ Validation MSE = 0.000234
@ Validation R%os =0.33
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Neural Network

-CNN

o Testing MSE = 0.000332
o Testing R3,s = 0.29

Testing 1d-CNN
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Neural Network

LSTM

@ LSTM networks are belong to the class of recurrent neural networks
(RNNs).

@ It has been introduced by Hochreiter and Schmidhuber (1997) and
were further refined in the following years until now.

@ LSTM networks are specifically designed to learn long term
dependencies and are capabale of overcoming the previously inhernet
problems of RNNs, such as vanishing and exploding gradients for
large time step(Sak, Senior, Beaufays, 2014).
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Neural Network

LSTM

@ LSTM networks are composed of an input layer, one or more hidden
layers, and an output layer.

@ The number of neurons in the input layer is equal to the number of
explanatory variables (which we often called features).

@ The number of neurons in the output layer reflects the output space.

@ In our question, we have one neuron since we would like to predict the
Holding Period Return at time t for each given company'’s features at
time t-1.
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Neural Network

LSTM

@ LSTM can "preserve” the earlier hidden node activations for
prediction at current time t (Hochreiter and Schmidhuber, 1997).

e remove and add information to the cell.
e gated mechanism.

©

LST™M LSTM
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Neural Network

LSTM

@ Memory Cell consists of input gate /¢, forget gate f;, cell ¢;, output
gate o; and hidden state h; which are operated as:
it = 0(Waie + Whihe—1 + Weice—1 + by)
fit = O'(Wwf.’lit + thht—l + chct_1 + bf)
ct = frer—1 + it tanh(Wyexs + Whehi—1 + be)
0¢ = 0(Waott + Whohi—1 + Weoct + bo)
ht = os tanh(c;)
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Neural Network

LSTM

@ Input gate: Decide what to store

& ®
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Neural Network

LSTM

@ Forget gate: Decide what to throw away

O @
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Neural Network

LSTM

@ Update cell: Update the cell state
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Neural Network

LSTM

@ Output gate: Decide what the output is

h;
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Neural Network

LSTM

@ We perform LSTM because some of the features are time-correlated
shown by the ACF box-plot.

@ Below is the matrix of a single input(company) we put in LSTM.

@ kp: means the value of p factor for a single company at time t

ki1t ki 0 kpa

kipo koo - kpo
Kp,T = . .

kit kot 0 kpT
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Neural Network

LSTM

@ We perform different time-step (rolling window) in the LSTM network
@ Below is an input of company 1 of choosing features from t=0 to t=3
@ The target y; is the return of company 1 at t=4

; T
Xcompanyl = . = Kp73
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Neural Network

LSTM

@ The number of total companies cross time:
© training: 15846
@ validation: 5889
© testing: 4914
@ Furthermore, the length of each single data, whether in training,
validation or testing, is different due to the period of existing for each
company is different. This is the reason why we prefer to construct
our data company by company cross time, not month by month cross
company. Apparently, it would be easier for us to construct our model
later.
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Neural Network

LSTM

@ training dataset shape:

@ torch.Size([1426233, 110, 1]) torch.Size([1426233, 1))
@ validation dataset shape:

O torch.Size([291493, 110, 1]) torch.Size([291493, 1])
@ testing dataset shape:

O torch.Size([283855, 110, 1]) torch.Size([283855, 1])
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Neural Network

LSTM

@ We choose time-step = 1 month for each input company

e Optimizer: adaptive moment estimation algorithm (Adam), an
efficient version of the SGD introduced by Kingma and Ba (2014).

o Criterion: Mean Square Error (reduction = 'mean’)

@ Furthermore, we random shuffle the data for each batch input.
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Neural Network

LSTM

o LSTM Model Setting:
© input dimension = 110
@ hidden dimension = 128
© number of hidden layers = 1
© output dimension =1

@ Number of parameters for the model: 67201

@ Hyperparameters:

@ batch size = 512
@ epoch =500
© learning rate = 0.0001
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